A bag-to-class divergence approach to multiple-instance learning
نویسندگان
چکیده
In multi-instance (MI) learning, each object (bag) consists of multiple feature vectors (instances), and is most commonly regarded as a set of points in a multidimensional space. A different viewpoint is that the instances are realisations of random vectors with corresponding probability distribution, and that a bag is the distribution, not the realisations. In MI classification, each bag in the training set has a class label, but the instances are unlabelled. By introducing the probability distribution space to bag-level classification problems, dissimilarities between probability distributions (divergences) can be applied. The bag-to-bag Kullback-Leibler information is asymptotically the best classifier, but the typical sparseness of MI training sets is an obstacle. We introduce bag-to-class divergence to MI learning, emphasising the hierarchical nature of the random vectors that makes bags from the same class different. We propose two properties for bag-to-class divergences, and an additional property for sparse training sets.
منابع مشابه
Multiple-instance discriminant analysis
Multiple-instance discriminant analysis (MIDA) is proposed to cope with the feature extraction problem in multiple-instance learning. Similar to MidLABS, MIDA is also derived from linear discriminant analysis (LDA), and both algorithms can be treated as multiple-instance extensions of LDA. Different from MidLABS which learns from the bag level, MIDA is designed from the instance level. MIDA con...
متن کاملAttention-based Deep Multiple Instance Learning
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator tha...
متن کاملInstance Label Prediction by Dirichlet Process Multiple Instance Learning
We propose a generative Bayesian model that predicts instance labels from weak (bag-level) supervision. We solve this problem by simultaneously modeling class distributions by Gaussian mixture models and inferring the class labels of positive bag instances that satisfy the multiple instance constraints. We employ Dirichlet process priors on mixture weights to automate model selection, and effic...
متن کاملAutomatic classification and detection of clinically-relevant images for diabetic retinopathy
We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an a...
متن کاملMULTI-INSTANCE LEARNING WITH ANY HYPOTHESIS CLASS Multi-Instance Learning with Any Hypothesis Class
In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance labels that determine the bag labels. The learner is then required to emit a classification rule f...
متن کامل